

A COMPARIASION OF JOB DURATION
UTILIZING HIGH PERFORMANCE COMPUTING

ON A DISTRIBUTED GRID

Michael Austin, JerNettie Burney, & Robyn Evans
Mentor: Je’aime Powell Principal Investigator: Dr. Linda B. Hayden

1704 Weeksville Road, Box 672
Elizabeth City, North Carolina 27909

Abstract--The Polar Grid team was tasked with testing
the central manager system on Elizabeth City State
University to ensure that it was prepared for grid
computing. This was achieved by installing the Condor
7.4.0 client on iMac workstations computers located in
Dixon hall, Lane hall, and E.V Wilkins on the campus
of Elizabeth City State University. Condor allowed jobs
to be submitted to the central manager and distributed to
one or more nodes. The job that the team submitted to
Condor was the compiled Sieve of Eratosthenes in C++
code. This code generated prime numbers from 0 to
500,000, and was essential in testing the job submission
process. The compiled code that was used in the script
file was submitted to the central manager through
Condor. These jobs were then distributed to available
nodes for processing.
 After each successful job submission, log files
were created to record statistical data. The data was of
the elapsed time it took to process its entire submission
along with the time it took to process each individual
job. The data from these tables were imported in to Mini
Tab, which was a statistical analysis software package.
An analysis of variance (ANOVA) was then performed
to determine if the elapsed times of the submissions
varied within a 5 percent level of significance. From
ANOVA, statistical evidence proved that by increasing
the number of nodes, the elapsed time would decrease;
therefore showing a performance increase..
Keywords – ANOVA, cluster, Condor, grid, Kitoto, node,
script, VikeGrid

I. NATURE AND BACKGROUND OF THE STUDY
A. Introduction

B. Statement and Background of the Problem

The Polar Grid team’s ultimate goal was to find a
Titanic prime. A Titanic prime is a prime number that has
at least a 1,000 digits. This prime number takes a massive
amount of computing power in order to find it in a short
amount of time.

The first step toward achieving this goal was to find a
prime number generator. The prime number generator that
was chosen to use was derivative of the Sieve of
Eratosthenes. This prime number generator is capable of
producing numbers in between 0 to 500,000.

The code generated was used to test the grid. In the
use of this prime number generator we tested how long it
took to complete fifty jobs with various numbers of
workers.

C. Hypothesis

The team hypothesized that the elapsed time for
a single node to complete a submitted job would take
much longer than multiple nodes collaborating to
complete the same job. This reason being that if the nodes
worked together collaboratively instead of individually,
the amount of time it will take for a job to finish would be
much quicker than if a single node was working by itself.

D. Definitions of terms

• Cluster – the network of small computers that is
under the control of a larger computer

• Grid – a network of computers that work
together, but are topographically dispersed

• Script – defines an executable file

• Condor – a batch scheduler used to

communicate with VikeGrid

• Node – a core

• VikeGrid – a grid located on the campus of

Elizabeth City State University that uses bothe
desktop and cluster resources

• Kitoto – name of the central managr that

manages VikeGrid

• ANOVA – acronym meaning the analysis of
variance; a program in Minitab used as a
statistical method for making simultaneous
comparisons between two or more means and
attempts to prove a significant relationship
between variables

II. REVIEW OF LITERATURE
A. Prior Research

Different studies on Titanic prime numbers have
been conducted over the years by different
mathematicians and scientist to find an equation that
could generate thousands of primes in a small amount of
time. With the aide of computer scientist, algorithms
using various programming language codes were created
to generate these numerous amounts of primes using
computing power. These different algorithms, using
codes to generate primes at a quickly are called “sieves.”
These sieves can be used in numerous programming
language such as Java, C++, C#, and Fortran to name a
few. There are different sieves that can be utilized, eachof
which has a different performance, a different method for
how to compute the primes, along with its limitations of
how many numbers it can compute. One example is the
Sieve of Eratosthenes, named after a Greek
mathematician who created an algorithm for calculating
primes. His algorithim is based on. This was one of the
earliest sieves created, and can generate primes from zero
to 500,000 within in a few minutes. The next sieve was
that of named Atkin that could generate more primes in a
less amount of time. For the team’s research the main
focus was on using the Sieve of Eratosthenes. The
objective was not to find the fastest generator, but any
generator that could be used to test out the cluster system
Kitoto.
This research was an extension of the 2008 – 2009
academic Polar Grid Team’s research, “Implementation
of a Static Cluster”. The previous Polar Grid Team
conducted their research on how to permanently install a
Condor-based test cluster. The team’s main focus was on
network topography, naming schemes, user management
and compatibility concerns. The target machines included
the SunFire V480 management server and several
SunBlade 150 workstations, which utilized Solaris 10 as
their primary operating system and the Condor High

Throughput Computing software was utilized as a job
scheduler (Brown, Jr., Jefferson, Jr., & Vick, 2009).

This year’s team expanded that research in order
to install Condor onto the Macintosh and Windows
environments. This year’s team was able to install condor
easily with less configuration issues so that more time
could be devoted to the main objective (Brown, Jr.,
Jefferson, Jr., & Vick, 2009).

B. Related Literature
The team did research as to what a cluster

system function is and the history from which it comes.
The first resource dealt with research about cluster
computing (Baker, Buyya and Hawick). The importance
of this book was to understand where a cluster computer
comes from and the different works that happen behind
the scenes to make the computer do its different tasks. In
order to understand how it works, one must first
understand what it is and the different operations it can
achieve.

The next resource told of the different uses that
the marketplace has for high performance computing
(HPC) (Strohmaier, Dongarra and Meuer). This resource
was needed for a broader interpretation for why does the
science community have a need for the knowledge of high
performance computing. It was very important that the
team understood that HPC goes further than what was
researched in the duration of the project. The reason being
for this is in the future, teams can try out a different
aspect of HPC to excel their knowledge in all the different
things HPC can accomplish.

Finally, the last resource informed the team of
the different technologies that are at work within the
cluster computer (Petrini, Feng and Hoisie). Though it
may not have seemed that important, these processes have
a very huge effect when something goes wrong with a
cluster computer. If a team didn’t know the different
processes that are used to carry out tasks given to the
computer, that team cannot reevaluate the steps that were
taken to see if there was an error carried out when the
computer was commanded to do a specific thing or even
if the task was given to the right process. Therefore, not
only must the team know of the architecture of cluster
computers, but they must understand the micro
architecture to gain a higher perception of how to use a
cluster computer.

III. METHODOLOGY
A. Definition of the population

There were two types of data collected for this
research project: elapsed time it took to process the entire
submission and the time it took to process each individual
job. Overall there were a total of eight submission files.

The team was able to access these datasets by
submitting the Sieve of Eratosthenes job—used to test the

titanic prime generator found earlier—to Condor and
uploading the log files for this job on to a Condor Log
Analyzer. The analyzer allowed the team to upload the
log files that were generated by Condor, and get back
both graphics and an explanation of what happened over
the course of the submission. From there, the log times
were uploaded into a Microsoft Office Excel 2007
worksheet, and the means for the eight submission files
were calculated. This information was then uploaded into
MiniTab—a statistics package developed in 1972 at
Pennsylvania State University by researchers Barbara F.
Ryan, Thomas A. Ryan, Jr., and Brian L. Joiner (What is
Minitab, and where can I access it?, 2005 - 2010). The
analysis of variance, also known as ANOVA—a feature
in Minitab used to tests whether the treatment means
differ from each other—was used to see if the elapsed
time for a single node to complete a submitted job took
longer than multiple nodes collaborating to complete the
same job (ID 121: What are the differences between
Analysis of Mean?, 2010).

B. Procedure
Throughout the course of this study, there were

many procedures utilized to ensure the accuracy of
results.

The group started off by downloading Condor
7.4.0 for the MAC OSX computers located in the Center
of Excellence in Remote Sensing Education and Research
(CERSER) lab in Lane Hall. The 7.4.0 version of Condor
was chosen for two reasons: it was the current stable
version of Condor and the team wanted to keep the grid
homogeneous.

The next step was to create a Condor account for
each computer. To do this, the group logged in as
administrators and went to “System Preferences” and
clicked on “Accounts”. From here, the account was set
up, by authenticating and clicking on the “+” icon. The
appropriate information—such as the name, short name,
and the password—was entered and the account was
created. See figure 1.

In addition to creating the Condor account, the
group decided to changed the energy settings while in the
System Preferences pane. The energy saver settings thus
became, “NEVER put the computer to sleep” when it is
inactive and “put the display to sleep when the computer
is inactive” after an hour. These setting changes were
made in order to keep the computers active during the
submission and test run for the jobs.

Next, Condor 7.4.0 was installed. To do this, the
“Terminal” window in on the Mac side of the computer
was utilized. Terminal is referred to as the “gateway
command line” in Mac OS X and is a utility program that
“provides an interface with a shell, or command
interpreter” that is used to “enter data, send commands,
and receive output from the mainframe computers”
(McElhearn, 2005).

The “su” command, was then used to switch to
the administrator account, and then the “bash” command
was used to call the bash shell. The group then changed
the permission for the condor directory by typing “chmod
a+rx ~condor.” From here, the directory was changed and
a new directory, named condor, was created. To make
sure that there was nothing in the directory, the “ls”
command was used. The Condor 7.4.0 file was then
copied from the “Downloads” folder and pasted into the
“/condor/” directory. The working directory was then
printed and all the items inside were printed. The file was
then extracted by using “tar –xzf condor-7.4.0-
MacOSX0.4-x86-dynamic-unstripped.tar.gx .”

Condor was set up, by changing to the

“/condor/condor-7.4.0” directory and installing the file by
using “./condor_configure --install – install-
dir=/condor/condor-7.4.0 – local-dir=/condor/codor-
7.4.0/var --owner=condor.” Symbolic links were then
created. To do this, “ln –s /condor/condor-
7.4.0/etc/condor_config ~condor/” was used.

To grant access to the condor commands, the
path was changed to “$PATH:/condor/condor-
7.4.0/bin/:/condor/” and then the files were edited using
the “nano” command.

The “nano” command is used as an alternative
for the vi editor. The nano editor is a easier way to edit
fils in terminal, offering a screen-based interface that can
be navigated using the arrow keys on a keyboard
(Peterson, Part 1: Getting Started, 2009).

In the “condor_config” file, the following
changes were made:

• Central Manager: CONDOR_HOST =

kitioto.ecsu.edu
• Collector_Name: VikeGrid
• Allow write: *

The “nano” command was also used to edit the

“condor_config.local” file. The following changes were
made to the file:

Fig. 1. Creation of the Condor Account

• Change Host: kitoto.ecsu.edu
• Collector Name: VikeGrid

Next, the status of condor was checked and a

pearl script was created. To create the pearl script, the
“nano” command was once again, as the following script
was created:

#!/bin/bash
Ensure network is all setup
sleep 100

Ensure condor environment is
loaded
source /condor/condor-
7.4.0/condor.sh

Start condor
/condor/condor-
7.4.0/sbin/condor_master

From here, everyone was given the rights to

read, write, and execute “/condor/condor-7.4.0/condor.sh”
file and the file was then added to CRON. To do this the
following code was used:

“chmod 755 /usr/sbin/start_condor” and press
[Enter]
 “ls –l /usr/sbin/start_condor” and press [Enter]
Type “echo “@reboot root
/usr/sbin/start_condor” >> /etc/crontab

The XCODE, which is a feature on the Mac side

of all of the computers that can compile C++ code,
needed to be installed so the C++ source code could be
compiled. To do this, the XCODE software was installed
and “cd” command—used to move through drectories—
was used to copy the XCODE from the developer tools to
the hard drive, and the installation process was run
(Peterson, Part 5: Shells, 2009).

Complete installation instructions can be found
in the appendix section of the paper.

C. Collection of Data

It became a major obligation to try to find a
prime number generator to use as a means to test the
performance of VikeGrid. The team found out that there
are a series of prime number generators called a “sieve.”
A sieve is an algorithm made by a programmer that
generates an increasingly productive amount of prime
numbers. The team required Java, C, or C++ code to be
able to submit the jobs to VikeGrid. The sieve that the
team decided on using is the Sieve of Eratosthenes named

after a Greek mathematician who formulated this equation
to generate prime numbers.

Once the team found the C++ code for the sieve,
they compiled and ran the C++ code. The code was then
modified then expanded generate prime numbers between
0 and 500,000.

The next step was to create a job submission
script in order to utilize the condor pool named VikeGrid.
The major factors that were needed to form this script was
the output file for the C++ code, the arguments for the
specified nodes that were desired to submit to VikeGrid,
and the newly named log files after every submission. The
information that was needed to create a submission file
was:

• Output file
• The log file
• The queue which tells condor how many times

condor will submit the jobs
• Arguments which defined specific number of

nodes in which to submit jobs

The job submittal process began by establishing
how many nodes were desired to run the jobs. It was
determined that the team would do 1 node, then increase
it to 2 nodes, then 4, 8, 16, 24,36, and lastly 48 nodes.
After the jobs were done the log files were saved
according to how many nodes were tested.

Using Condor Log Analyzer—Figure 2—the
team found online, they were able to get the exact time it
each node took to finish a job. These times, were then
placed into Minitab in order to use the ANOVA feature to
get a statistical representation of the different submission
times.

D. Statistical Methods and Tests that will be used to
Analyze the Data

To compare the job submission times, a function
in MiniTab, the analysis of variance, also known as
ANOVA, was utilized. ANOVA is a statistical method for
making simultaneous comparisons between two or more

Fig. 2. Condor Log Analyzer

means. The function attempts to prove a significant
relationship between variables—that there was or was not
a change. To use ANOVA, a null-hypothesis is needed.
The null hypothesis states:

Ho = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 (No Change)

H1 ≠ µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6 ≠ µ7 ≠ µ8 (Change)

In the group’s study, ANOVA was performed to
determine if there was statistically enough variance
between the means. This was tested within a 5%
significance to note a difference in the job submission
times. If the p-value –the probability that the variation
between conditions may have occurred by chance, so the
smaller the p-value, the more significant it is—of the
ANOVA table was higher than the level of significance,
then the hypotheses would be rejected (Overview of
ANOVA, 2004). However, if the p-value was lower than
0.05, the hypotheses could be accepted.

The results of the ANOVA chart were placed in
a Tukey or chart—Figure 3. This allowed the group to
statistically see the difference between the eight job
submission times.

IV. ANALYSIS OF DATA
A. Results of the Statistical Analysis of Data
After conducting the necessary research, it was

discovered that a time difference is present when
submitting a job over x nodes.

Also, when the 48 nodes were tested, only 46
nodes would respond, so the team used 46 nodes instead
of the original 48.

B. Tables, figures etc. used for data analysis

C. Decision about the hypothesis
The team hypothesized that the elapsed time for

a single node to complete a submitted job would take
much longer than multiple nodes collaborating to
complete the same job.

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
A. Conclusions Resulting from Statistical Analysis of

the Data
The Polar Grid team’s ultimate goal was to find

a Titanic prime—a number with at least a 1,000 digits.
The first step toward achieving this goal was to find a
prime number generator—the Sieve of Eratosthenes. The
code generated was then used to test VikeGrid. In the use
of this prime number generator the team tested how long
it took to complete fifty jobs with various numbers of
workers.

Before the study, the team hypothesized that the
elapsed time for a single node to complete a submitted job
would take much longer than multiple nodes collaborating

0:00:00 
2:24:00 
4:48:00 
7:12:00 

1  2  4  8  16  24  36  46 

Ti
m
e 
in
 

H
ou

rs
:M

in
ut
es
:S
ec
on

ds
 

Number of Nodes 

Elapsed Time 

Fig. 3. ANOVA Tukey chart

Fig. 4. Graph of the Elapsed Time it took to complete a
job over x nodes

Fig. 5. Graph of the average time it took to complete a
job.

to complete the same job—the reasoning behind this
being that if the nodes worked together collaboratively
instead of individually, the amount of time it will take for
a job to finish would be much quicker than if a single
node was working by itself.

After the study was completed, the team looked

at the variance (the difference between points) that the
ANOVA produced. When the graph was examined, the
team concluded that it would be quicker for forty-six
nodes to split a job then to just run the job on one node.
However, the group noted that it was quicker for one node
to run a job submission multiple times then to have the
job split between x nodes and run multiple times.

Examining the ANOVA table, it became
statistically clear that there was a difference in the elapsed
time it takes for a job to run. This showed that the team’s
original hypothesis was correct. However the group noted
that this was not the case for the 16 nodes test run and the
36 nodes test run. The team was surprised at this, because
it was hypothesized that the times would decreases as the
number of nodes increased.

Although this was true, it was not constant; for
nodes 16 and 36, it took longer to split the job and run it
over multiple nodes. The group was surprised by this and
would like to further research what may have caused this.

B. Shortcomings
Over the course of the study, the team noticed some of the
computers were unable to be completely installed with
condor due to installation errors the team made—mainly
typing errors. For example, in the “condor_config” file,
instead of setting the Central Manager to,
CONDOR_HOST = kitoto.ecsu.edu, the team originally
set it equal to CONDOR_OST = kitoto.ecsu.edu. To fix
this issue, the group went back and reinstalled Condor
from scratch.

There was also an issue in checking the status of
Kitoto due to the sbin paths being incorrect. The group
originally had to log onto to Kitoto to check the status, but
once the correct paths were installed the issue was fixed.

Xcode was needed to compile the Sieve of
Erotosanes code, but due to the lab’s Xcode being the
incorrect version, this became an issue. To correct this
issue, the Xcode was updated on all of the computers.

The team also needed to figure out the correct
way to submit scripts to condor, and how to specify the
number of nodes to be used in the submission of a job. To
do this, the group had to specify the name(s) of the
node(s) the job would use to run; this specification was
made in the condor submission file.

Unfortunately, this year’s Polar Grid team was
not able to complete the ultimate research goal—finding a
titanic prime number; the team was only able to test the
job submissions for only one trial.

C. Future Works

The team would like for the future team’s
research of VikeGrid to use Titanic prime number, a
prime number with thousands of number places, so that
further testing of Kitoto can be done.

The Polar Grid team would like to have more
trials done then have a comparison of the different times.
This is so that there can be certainty that the times are
correct and no errors were made.

These job submissions were only tested on the
Mac side of each of the computers. For future teams, there
should be tests done on the Linux and Windows side of
the computers.

References

[1] Computer Hope. (2010). Retrieved from
http://www.computerhope.com/unix/uchmod.ht
m

[2] Developer tools xcode. (2010). Retrieved from
http://developer.apple.com/technologies/tools/xc
ode.html

[3] ID 121: What are the differences between
Analysis of Mean? (2010). Retrieved April 07,
2010, from Minitab - Software for Quality
Improvement: http://www.minitab.com/en-
US/support/answers/answer.aspx?ID=121&P=0
&R=255&M=43&S=44

[4] McElhearn, K. (2005). Chapter 2: Using
Terminal. In K. McElhearn, The Mac OS X
Command Line: Unix Under the Hood (pp. 9 -
10). Alameda, CA: Sybex.

[5] Overview of ANOVA. (2004). Retrieved April 8,
2010, from Improved Outcomes Software:
http://www.improvedoutcomes.com/docs/WebSi
teDocs/Statistics/Overview_of_ANOVA.htm

[6] Peterson, R. (2009). Part 1: Getting Started. In R.
Peterson, Ubuntu 9.04 Server: Administration
and Reference (p. 76). Alameda, CA: Surfing
Turtle Press.

[7] Peterson, R. (2009). Part 5: Shells. In R.
Peterson, Ubuntu 9.04 Server: Administration
and Reference (p. 483). Alameda, Ca: Surfing
Turtle Press.

[8] Vernon Brown Jr., M. J. (2008 - 2009).
Implementation of a Static Cluster. Elizabth
City, NC.

[9] What is Minitab, and where can I access it?
(2005 - 2010). Retrieved April 06, 2010, from
Indiana Univeristy - University Information
TEchnology SErvices:
http://kb.iu.edu/data/cagq.html

Appendix
/* Sieve Of Erathosthenes by Denis Sureau */
/* Arguments -- 1 is the number you want to check up to and 2 is the name of the output file */
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <fstream>

using namespace std;

void eratosthenes(int top, ostream & out)
{
 int* all = new int[1000000];
 int idx = 0;

 out << "1 ";

 int prime = 3;

 while(prime <= top)
 {
 bool skip = false;
 for(int x = 0; x < top; x++)
 {
 if(all[x] == prime) {
 prime += 2;
 skip = true;
 break;
 }
 }

 if(skip == true) {
 continue;
 }

 out << prime << " ";
 int j = prime;
 while(j <= (top / prime))
 {
 all[idx++] = prime * j;
 j += 1;
 }

//skip:
 prime+=2;
 }
 out << std::endl;
 return;
}

int main(int argc, char **argv)
{
 ofstream output;
 int top = 500000;
 if(argc > 1) {

 top = atoi(argv[1]);
 output.open(argv[2]);
 }
 else {
 output.open("output_primes.txt");
 }

 eratosthenes(top, output);
 return 0;
}

/* Pearl Script */

#!/bin/bash
Ensure network is all setup
sleep 100

Ensure condor environment is loaded
source /condor/condor-7.4.0/condor.sh

Start condor
/condor/condor-7.4.0/sbin/condor_master

/* Condor Submission File with Specific Nodes */

Universe = vanilla
Executable = primes

output = primecondor.out
error = primecondor.error
log = primecondor.log
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
Requirements = Name =="slot1@lan111-04m.local" || Name =="slot2@lan111-06m.local"

Queue 3

